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This study makes a specific comparison between two different two-dimensional free 
shear layers: the T-layer which develops in time from an initial tangential velocity 
discontinuity separating the two half-spaces ; and the S-layer which develops 
downstream of the origin where two uniform streams of unequal velocity are brought 
into tangential contact. The method of comparison is to assume that the vorticity of 
the S-layer is given parabolically by a Galilean mapping of that of the T-Sayer ; to 
satisfy the appropriate boundary conditions in the S-layer and to compute the 
velocity induced a t  any point in the S-layer by its vorticity field; and to compare this 
velocity to that which can be derived from the velocity of the T-layer a t  
corresponding points by a Galilean transformation of the velocity itself. The purpose 
of this calculation is to assess approximately how far the flow in the S-layer is from 
parabolic and, in particular, to what extent the perturbations induced upstream by 
large concentrations of vortieity found downstream are instrumental in hastening or 
retarding the subharmonic instability that leads to the formation of these large 
structures. The calculations suggest that this elliptic influence, or the feedback, in a 
mixing layer is relatively small, a t  least for small velocity ratios. 

1. Introduction 
A shear layer is formed whenever two streams a t  different velocities come in 

contact with each other. In  nature i t  is found, for example, in the discharge of a river 
in a lake or an estuary, or in those regions in the atmosphere where clear-air 
turbulence is encountered. In  the laboratory, the spatial development of a shear 
layer formed downstream of the trailing edge of a thin splitter plate, a plane jet or 
a baekward-facing step has been the subject of many experimental investigations. It 
has been studied in detail in the laboratory by Liepman & Laufer (1947), Bradshaw 
(1966), Freymuth (1966), Browand (1966), Brown & Roshko (1974), Winant & 
Browand (1974), Batt (1975), Pui & Gartshore (1978), Ho & Huang (1982), among 
others. This real turbulent shear layer, hereafter referred to as the S-layer (see 
figure 1 a ) ,  is a turbulent flow endowed with a well-documented large-scale coherent 
structure which persists over a wide range of Reynolds numbers. A notable feature 
of this coherent motion is its close similarity to the two-dimensional unsteady flow 
that arises from the initial superposition of two uniform streams at  different spccds 
and a few initially weak two-dimensional perturbations. In  the latter case, to definc 
the initial flow field, infinitesimal perturbation theory is used. It yields eigcnfunctions 
for the velocity components which are satisfactory solutions of the equations of 
motion as Song as their amplitude is sufficiently small. The eigenfunctions selected 
are those that according to linear stability theory have the largest growth rate. 
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Spatially growing Slayer  Temporally growing T-layer 

(6) (4 
FIGURE 1. (a) Schematic of a spatially growing mixing layer, the S-layer, a t  some given time t'. 

(6) Schematic of a temporally growing mixing layer. the T-layer, a t  some given time t .  

together with subharmonics of these waves which will grow slowly a t  first but which 
will amplify rapidly during the nonlinear stage of the calculation. The growing 
(fundamental) perturbations develop into a row of connected vorticity spirals whose 
spacing is the fundamental wavelength. These spirals, being unstable to subharmonic 
perturbations, subsequently pair and as a result both the circulation around a spiral 
and the spacing between the adjacent spirals increase. The results of numerical 
computations under such controlled initial conditions and periodic boundary 
conditions by Patnaik, Corcos & Sherman (1976), Peltier, Halle & Clarke (1978) and 
Riley & Metcalfe (1980) illustrate this phenomenon. 

To what extent the coherent motion in the S-layer can be approximated by this 
deterministically calculable two-dimensional unsteady flow, hereafter referred to as 
the T-layer (see figure 16) ,  is discussed in Corcos (1979) and Corcos & Sherman (1984). 
Essentially, the deviations from the two-dimensionality of a real shear layer are 
viewed as perturbations (though possibly large) of this basic two-dimensional time- 
dependent flow in the sense that their interaction with that flow is apparently unable 
to destroy or even to control it. Accordingly, such a two-dimensional flow can be 
treated as a base flow for the turbulent mixing layer. This base flow is, therefore, 
proposed as a substitute (Corcos 1979) for the usual mean flow of turbulence. This 
results in a very marked simplification in that this base flow has an independent 
existence, whereas the mean flow does not. 

Comparison of the calculations of the T-layer with the experimental studies by 
Brown & Roshko (1974) and Winant & Browand (1974) of the plane turbulent 
mixing layer, and with the subsequent analysis by J i m h e z  (1980) of former's results, 
shows that the dynamics of the coherent motion in the T- and S-layers is essentially 
the same. In  the S-layer, figure l ( a ) ,  the vortex sheet formed downstream of the 
trailing edge of the plate is seen to roll-up into discrete vortex cores or structures, and 
then these structures amalgamate essentially in pairs further downstream. The 
spacing between the newly paired vortex structures increases, and so does their 
diameter and hence the circulation around them. The only laboratory evidence of the 
initial stages of the growth of the T-layer to the author's knowledge lies in the tilting- 
tube experiment of Thorpe (1971), where the uniformity of the initial state in x and 
the antisymmetry of the flow with respect to the x-axis guarantees no propagation 
of the waves in x but only their growth in time up to a roll-up (see figure 16). 

I n  spite of the striking similarity between the T-layer and the S-layer flows, there 
are some differences between the two which have not been sufficiently explored so 
far. In the T-layer, the problem is parabolic in time and therefore the initial 
perturbation can be specified. In  the S-layer, the problem is elliptic in space, and 
therefore it is not clear that the perturbations can be specified a t  the origin of the 
layer. Using the vortex method of Chorin (1973) for an S-layer, Ashurst (1977) does 
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in effect prescribe vorticity a t  the origin of this flow, but the size of the error that 
results is not clear. In  fact, for the S-layer, none of the necessary boundary conditions 
are known a priori for a domain, x’ > 0, ly‘l < 00, though if the domain is extended 
to negative values of x’, one may assume reasonably that as x’ --f - 00 , ii+ i? x U, for 
y’ > 0, and U + F X  U, for y’ < 0. 

Recently, Davis & Moore (1985) in their numerical study of mixing layers used a 
quadratic upwind differencing for convective terms and a Leith-type differencing for 
time rate-of-change terms to solve the governing equations. They perturbed the flow 
near the origin by prescribing the eigenfunctions for an upstream hyperbolic tangent 
profile from the linear stability theory (see Monkewitz & Huerre 1982). It was 
necessary to impose some sort of a perturbation near the origin to trigger a roll-up 
as well as pairing processes a t  low Reynolds numbers. They found that whereas the 
dynamics of the mixing layer was insensitive to the magnitude of the Reynolds 
number, the shape of the vortices was dependent on it. The vortices were smeared 
owing to the physical diffusion as the Reynolds number was decreased. Also, the 
basic vortex dynamics was seen to be weakly dependent on the amplitudes of these 
perturbations, as also experimentally observed by Freymuth (1966) in his study of 
transition in a separated laminar boundary layer, and the frequency content 
detemined the dynamics of the shear layer, in agreement with the latter’s experiment. 
To detect the presence of feedback, they perturbed the S-layer for some brief initial 
interval and then stopped the forcing to see if the vortices did roll-up. They thus 
found that the feedback was present only for cases where the Reynolds number was 
high and the upstream velocity profile was very unstable. This indicates that the 
physical diffusion retards this roll-up process in the absence of any external 
perturbations. The feedback considered by Davis & Moore (1985) was with respect 
to the roll-up process and not the pairing process, which is the result of a dynamically 
very different mechanism of the subharmonic instability. However, this raises a 
question as to whether the upwind-differencing techniques that must introduce some 
numerical diffusion may mask or misrepresent the feedback. 

I n  another recent numerical study of free shear layers by Fujiwara, Taki & Arashi 
(1986), the authors employed an upwind-difference scheme such that the truncation- 
error term was of third order with the fourth derivative term as its coefficient. Using 
such a scheme and by carefully comparing the viscous-shear-stress terms with the 
third-order error term, they obtained physically meaningful solutions. They had 
tried other upwind-difference schemes that were not able to trigger the roll-up 
process, but with this particular scheme, they managed to trigger the roll-up and the 
pairing processes without any external forcing. This leads to an interesting inference 
that the spatial-temporal truncation-error terms of some finite-difference schemes 
may have the appropriate spectral content in them to provide the required forcing. 
If that  is the case, a Fourier analysis of these error terms and their comparison with 
the eigensolutions from the linear theory should resolve this question. Even if it were 
so, the particular finite-difference scheme would provide the necessary perturbations 
only for a narrow range of flow parameters. Conversely, even if one were to impose 
the perturbations from the linear stability theory, they could be swamped by the 
truncation-error terms of a particular finite-difference scheme. 

This should explain why the calculation of the T-layers has been far more popular, 
since the streamwise direction is not finite differenced but Fourier transformed. Also, 
computer storage required for the S-layer calculations is an order of magnitude 
larger. 

One of the physical questions associated with this difference between the T- and 
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S-layers is the following : can the distant vortices, which have already paired once or 
several times downstream in the S-layer, induce perturbations upstream that seed 
the subharmonic instability? In this case, the S-layer would not need imposed 
upstream perturbations in order to develop downstream, but would create its own 
perturbations and keep developing downstream. 

I n  order to quantify such a question, the present work offers a model of the S-layer 
which introduces the elliptic nature of the real flow indirectly to some level of 
approximation into a solution of the T-layer. 

2. Temporal problem 
The problem in the temporal domain corresponds to the solution of two- 

dimensional unsteady Navier-Stokes equations and the continuity equation in an 
unbounded domain on a Cartesian ( x ,  y)-grid. Spatial periodicity is enforced in the x- 
direction to allow the temporal evolution of wavelike structures. The base flow is 
assumed to be the diffused erstwhile tangential velocity discontinuity so that i t  is 
described by an error-function profile. At time t = 0 an appropriate perturbation 
field is imposed on this base flow and the flow is thus allowed to evolve. The initial 
perturbation field is given by 

where t = 0;  Q(y) is the complex amplitude of the perturbation stream function 
calculated from the linear stability theory; c = c,+ic, is the complex phase speed 
with c, = 0 owing to the antisymmetry of the bast. profile, and a = ar is the 
wavenumber of a given unstable mode k. 

Computations in the T-layer are carried out with an initial perturbation composed 
of three normal modes. These normal-mode solutions are obtained by solving the 
linear stability problem. Since we are interested in the development of a mixing layer 
through the process of pairing and not a collective coalescence, only three 
wavenumbers, the fundamental and its first and third subharmonics were chosen ; as 
a result two successiw pairings are simulated. The fundamental wavenumber is 
selected to be the one that would be most amplified according to the linear theory. 
Initial amplitudes of the three wavenumbers are chosen sufficiently small for the 
linear stability theory to hold. 

Contour plots of the passive scalars are shown in figure 2(a-c). The ordinates are 
shown in units of the fundamental wavelength A,. From these plots, i t  is seen that 
as the vortices pair, the diameter of the vortex spiral d doubles. Since the velocity 
U remains unchanged, the stretching rate y ,  defined as a, us, where s is the coordinate 
along the stagnation streamline joining two vortex spirals, being of the order of 
U / d ,  is halved for each pairing. The thickness of the individual vortex sheet 6 is of the 
order ( v l y ) ;  (see Corcos 1979; Corcos & Sherman 1976), and hence 6 / d  decreases by 
a factor of d2. Since time for each successive pairing doubles, we have therefore in 
time t ,  S/d K l/&. This is the reason that the vorticity decreases a t  a slower rate than 
the rate at which the lengthseales increase for each pairing. Figure 3 shows the 
growth of the vorticity thickness 6, = A U / ( a ,  in the T-layer with time t ; U is the 
reference velocity in the T-layer. 
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FIGURE 2 .  Passive-scalar contours in the T-layer, Redu, = 50. Three-wave interaction : a, = 
0.43, a1 = 0.215, a3 = 0.1075; A,/A, = 2 ;  A , /A3  = 4. (a )  Rolled-up structures; (b )  once-paired 
structures ; ( c )  twice-paired structure. 
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FIGURE 3. Growth of vorticity thickness with time in the T-layer. Three-wave interaction. 
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3. Spatial problem 
I n  view of the dynamic similarity of the evolution of the structures in the T-layer 

with time t ,  and in the S-layer with downstream distance x’, and the fact that these 
vortex structures move a t  a constant speed (sometimes called the celerity, see Coles 
1985) equal to  the mean speed Urn of the two streams in the S-layer, transformations 
are proposed in this study that will yield approximately the vorticity of the S-layer 
in terms of that of the T-layer. These transformations have roots in the following 
physical argument. 

Let x’, y’, t’ be the streamwise, cross-stream and time coordinates, respectively, in 
the S-layer corresponding to the coordinates x, y, t in the T-layer. If we conceive of 
an observer (z,y) in the T-layer moving along x a t  the mean speed Urn of the 
Corresponding S-layer, while the initial perturbations grow through the linear range 
to a nonlinear range to an eventual roll-up and the subsequent pairings, he will have 
recorded all the vorticity fluctuations that passed him during this time interval, say, 
t E [0,  TI. This corresponds in the S-layer to a record of vorticity fluctuations over the 
space interval x’ E [ O ,  U,T] at y‘ = y, t’ = th, a constant,. Consider now a column of 
observers (2, y), YE ( -  co, co) at time t = 0, in the T-layer, who repeat this experiment 
simultaneously. We will have thus constructed a two-dimensional vorticity field 
w’(x’,y’,th) for the S-layer from x‘ = 0 to x‘ = U,T, Y’E(- 00, co). This vorticity 
field is just one sample out of an infinite number of such possible samples corre- 
sponding to an infinite number of such columns of observers in any interval, say, 
2 E [ T ZnAo, 01 in the T-layer a t  t = 0 ;  n is the lowest subharmonic of the funda- 
mental wavenumber of wavelength A,, present in the initial perturbation spectrum a t  
t = 0 in the T-layer. Each sample S corresponds to a characteristic x, = Urn t fxOs 
in the (x, t)-plane of the T-layer and is a solution a t  that particular time t’ = tTx/U,, 
in the S-layer, see figure 4 ( a , b ) ;  xOs is thc intercept on the x-axis of the particular 
sample S as shown. These transformations include the one that was discussed in 
Corcos (1980) and Kaul (1982). The alternative mapping was used in a recent 
calculation (see Kaul 1986), and the corresponding results are discussed here. 

Then, any property in the T-layer given by a function f ( z ,y , t )  will map into a 
corresponding function f’(x’,  y’, t ’ )  in the S-laycr with the following linear trans- 
formations : 

x‘ = u,t, t’ = t+x/Urn, y’ = y. (2) 

Under this transformation, any finite region in the T-layer transforms into a 
corresponding finite region in the S-layer since the Jacobian of this linear 

The vorticity equation in the T-layer transforms under this mapping to that for 
the S-layer as follows. The vorticity equation in the T-layer is governed by the 
equation 

at + u, a, + au = v(axx (,, + ayv w ) .  

Using (2) and expressing it in terms of x‘, y’, t‘, we first get the following equation for 
the S-layer: 
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X 

FIGURE 4. Coordinate axes system for the T- and the S-layers and the representation oft’ = constant 
as an ( z , t )  characteristic in the T-layer. (a,) Transformation t’ = t-x/U,; (b )  transformation 
t‘ = t +- ./urn. 

Then if the Galilean transformation extends to u and v, we have 

and we get 
u’ = u+u,, 21’ = 0 ,  
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hence as AU/U,+O, the exact equation for the vorticity in the Slayer, 

tends to (4). 
These transformations map the vorticity of the T-layer to that of the S-layer 

accurately for small values of velocity ratios, AUIU,, where AU = U.  - U, and 
Urn = -( U,+U,), U, and U, being the velocities of the low- and high-speed streams 
respectively. 

It is interesting to note that the transformations proposed here recover the 
relations derived by Gaster (1962, 1965) for the eigenvalues of the two domains for 
small rates of amplification. For example, on substituting the first of the trans- 
formations given by (2) into the expression exp {ia,(x- iei t ) )  or exp (i(a, x - iPi t ) ) ,  
where pi > 0 is the temporal amplification rate, corresponding to a single 
perturbation component in the T-layer (equation (1) ) ,  we get 

at, + uf a ,  0 1  + 211 avf = v(az.,. + av,vl o r ) ,  ( 5 )  

11 exp { i [ (u, - i $) xf- (a,  Urn) t’ 

in the S-layer, which can be rewritten as 

exp{i[(a,+iai) x’-b,t’]), 

where a, is the wavenumber, ai < 0 is the spatial amplification rate and b, is the 
frequency. Comparing the preceding two expressons, we get a, = a,, ai = -pi/Um 
and b, = a, U,. This implies that  the wavenumbers in the two domains are equal and 
the group velocity ab,/aa, is given by the ratio of the amplification factors in the two 
domains, -pi/ai. 

According to our transformations, the mean speed or the celerity, Urn, is equal to  
the group velocity ab,/aa,. However, there is an error in these transformations which 
vanishes uniformly as AU/U,+O. In the T-layer, all the wavenumbers amplify 
without any dispersion. Therefore, this error is also a measure, in some sense, of the 
amount of dispersion between different wavenumbers as the perturbations travel 
downstream in the S-layer. In  the case of naturally occurring mixing layers, however, 
these structures undergo a jitter with their most probable location given by a 
Gaussian distribution (see Brown & Roshko 1974). But, since the flow here is 
perturbed a t  the most amplified frequency together with its first and third 
subharmonics, we should expect an insignificant amount of dispersion beyond the 
stage of roll-up when the fundamental has saturated and the subharmonic begins to 
amplify rapidly. It is this region of the flow that is of most interest to us. That the 
fundamental and the subharmonic frequencies are phase locked when the 
subharmonic begins to amplify rapidly has been observed experimentally by Ho & 
Huang (1982) and is also suggested by the computational results of the author (Kaul 
1986 6 ) .  Now, since the space-time correlations would indicate that the celerity or the 
mean speed of the structures is not constant across the mixing layer and that it is 
biased in the direction of the mean velocity profile, it would appear that the 
transformations proposed here would be in error. But, it has been shown by Favre, 
Gaviglio & Dumas (1967) that  this bias is only extraneous since i t  can be removed 
by filtering out the high-frequency component of the signals. 

An order of magnitude analysis for the accuracy of the transformation (2) is 
carried out as follows. 

In  the S-layer, the vortices are carried downstream a t  a mean speed Urn = 

i(Ul + 712), and also induce a velocity on themselves and on each other of the order 
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of AU = U2 - U,. If AU/U,  4 1,  the dependence on time of the S-layer vorticity is 
given to first order by ail = U,a,,. Experimentally, even if AUIU, is not small, the 
streamwise growth rate of the layer, i.e. the mean angle which it makes, is relatively 
small and therefore the development in space is relatively slow so that apparently, 
while the characteristic timescale in the S-layer is d l A U ,  the timescale for a typical 
pairing is sevcral units of d / A U .  From the two-dimensional calculations, with 
h z 3d and pairing time z 2h/AU z 6 d / A U ,  the error on the approximation above 
is roughly AU/61fm, rather than ALF/Um. 

Owing to the non uniform distribution of vorticity in the streamwise direction in 
the S-layer, there is a finite net, induced effect present a t  any point upstream in the 
S-layer. This is also a measure of the ellipticity of the S-layer problem. The difference 
between this induced velocity and the velocity transformed directly from the T-layer 
a t  a given point upstream will give a measure of the feedback signal. However, in 
constructing the S-layer vorticity field, the induced normal velocity upstream of the 
geometric origin of the flow has to be cancelled out to simulate the presence of the 
splitter plate. A method to do this is presented below. Other boundary conditions in 
the S-layer are satisfied by placing vortex sheets of appropriate strength in the flow 
field. Having thus completed the specification of the S-layer vorticity field, the 
feedback signal is measured a t  various upstream locations. 

Frequency and power-spectra analyses are carried out to measure the amplitude 
and phase of the various components of the feedback signal and its effect on the 
fundamental and the first subharmonic (also the first and third subharmonics) of the 
transformed velocity itself. 

3.1. Boundary conditions in the S-layer 

The vorticity distribution w’(x‘, y’, t’) obtained as described above is not by itself an 
acceptable approximate representation for the vorticity in the S-layer. The latter is 
necessarily characterized, in addition to a diffuse vorticity distribution which 
extends around the x’-axis to x’ + co , by a vorticity distribution for x’ < 0 such that 
as x’ --f - co that distribution tends to a singular vortex sheet of strength AU per unit 
length, such that the induced velocity due to the total vorticity distribution has zero 
normal component for all points x‘ < 0 to simulate the flow over a splitter plate. 

We shall be interested mostly in the contribution of the induced velocity to the 
first subharmonic frequency of the original fundamental frequency. As the vortices 
pair, the dominant contribution they make to the induced field is distributed over a 
few harmonics of their fundamental frequency, which is halved for each pairing. 
Thus while a large vortex far downstream of the trailing edge induces a field of 
velocity that is as intense as a smaller one further upstream, the same is not true of 
their relative contribution a t  a fixed frequency. Hence far enough downstream we 
replace the vorticity distribution by a simple steady vortex sheet of strength AU per 
unit length. 

Since the boundary layer on the splitter plate is thin in the experiments, we tend 
to think of the vorticity distribution for x’ < 0 as a singular vortex sheet whose 
density r (x ’ )  tends to AU as x’+ - 00. 

The total vorticity distribution is sketched in figure 5. By adding a uniform 
velocity field u = Urn everywhere, the boundary condition a t  y’ = f 00 will thus be 
satisfied. A distribution r (x ’ )  is determined on the splitter plate x‘ < 0.y‘ = 0 in 
order to satisfy the condition v’ = 0 there. To do this we proceed as follows. 
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I 
FIGURE 5. Model of the S-layer; vorticity a t  a given time t ’ .  

3.1.1. Boundary condition o n  the plate 

For all practical purposes, we can consider a finite distance ON, figure 5, beyond 
which the vortex density T(x’) assumes a constant value AU.  This is the distance over 
which the induced normal velocity due to the vorticity distribution for x’ > 0 will 
have decayed to a negligible value. Thus we determine T(x’) for xN < x’ < 0, with 
T(x‘) = AU for x < xN. The segment ON can be thought of as the splitter plate whose 
leading edge N is far enough away such that any perturbations there have a 
negligible effect on the flow near the trailing edge 0. This is similar to the concept 
in the theory of thin airfoils where the leading-edge effects are ignored while replacing 
the airfoil by a vortex sheet of variable density whose induced velocity field cancels 
the normal velocity created by the camber of the airfoil and its angle of attack. The 
solution adopted here is similar in spirit to the one used there with the difference that 
the induced normal velocity here is due to the non-uniform distribution of vorticity 
for x‘ > 0 and that its functional form is not easily handled in the numerical 
technique. 

Shift the origin x’ = 0 by a distance $ upstream to the midpoint of the plate, and 
replace the splitter plate by a vortex sheet extending over the interval -+ d x’ < $a, 
of some unknown vortex density T(x’).  Distance a is sufficiently large that the 
induced normal velocity vI due to the region I (figure 5) is negligible a t  x’ = -8.. This 
induced normal velocity vI at any point x‘ on the vortex sheet T(x’) must be balanced 
by an equal and opposite induced normal velocity vr a t  that x’ due to the vorticity 
distribution over the entire vortex sheet. This condition along with the Kutta 
condition, i.e. the velocity at the trailing edge of the plate x’ = ia is finite, will be the 
basis for our determination of the vortex density T(x’). We are still left with an 
infinite velocity a t  the leading edge of the plate x’ = -;a,, but as in thin airfoil theory, 
the solution obtained thus will be accurate enough for our purposes here. 

Once the vortex density T(d)  is determined, the total induced velocity a t  any 
point in the flow field will be the resultant of the induced velocities due to (a )  the 
region I, ( b )  the non-uniform vortex sheet T(x’),  ( c )  the uniform vortex sheet of 
strength AU, - oc) < x’ < $a, and lastly, ( d )  the uniform vortex sheet of density 
AU, &+X) < x’ < co (see figure 5). 

Thus we shall proceed as follows. The unknown vortex density T(x’), -$a d x’ < $a, 
is subject to the two conditions 
(i) vr(x’)+vl(x’) = 0 ;  -$a d x’ d $, 

where 

and (ii) the trailing edge velocity, qz1-;,, is finite. 



Large structure growth in a mixing layer 437 

Then we can write 

with x’ E [ -;a, ;a] and 
r (x’ )  = 0 a t  x’ = ;a. 

Integral (6) subject to (7) yields an analytical solution if the function wzr can be 
expanded in a Fourier series. Condition (7) ensures that the trailing-edge velocity is 
finite. 

Using the transformations 

x’ = -+ cose, 5 = -+a cos$, 

with 0 E [0, XI, and r(#) = 0 for # = 7c. (9) 

Assume a solution of the form 

where constants &, r,, &, . . . , r, will be determined by the Fourier expansion of the 
known function, v,(O). 

It can be seen on inspection that (10) automatically satisfies (9). Substituting (10) 
into (8) and using the integral formulae 

and 

cos (n$) sin 0 
d$=Tsin(nO), n = 0 , 1 , 2 , 3  ,... 

cos 4 - cos e 

cos $ - cos e 
sin (n$) sin $ 

J: 
a$ = - 7c cos (no), n = 1,2 ,3 , .  . . , 

which are the corresponding Cauchy principal values, we arrive at 

- ~ + q  cose+r, cos2e+. . .+r ,  cos(ne) = vI(e). 

W 1 ( B )  = w,+v, cose+w, cos2e+ . .  +w, cos(n0). 

(11) 

Expanding wI(e) in a cosine Fourier series, let 

(12) 

G=-wo, r , = v , ,  n = 1 , 2 , 3  , . . . .  (13) 

Comparing (11) and (12), we obtain 

With (13), we have the required solution for f($) from (10). The induced velocity 
due to the non-uniform vortex sheet is thus given by 

and 

where x’$[-+a,+a] for y’ = 0. 
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Uniform infinite vortex sheet 

r= A W  
N 4  * M (1) 

+ 

Wedge of vorticity distribution minus the finite uniform vortex sheet 

+ 0 R w’(x’,y’,?’)-AWoR (11) 

+ 

Continuous singularity distribution on the plate 
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N 0 

FIGURE 6. Various contributions to the total vorticity in the Slayer. 

3.1.2. Calculation of the induced velocity Jield 

Instead of calculating the induced velocities of the two uniform vortex sheets of 
strength AU,  - 00 < x’ < $z, and ( X  + &z) < x’ < co , and the induced velocity due to 
the region I separately, the following procedure is adopted for simplicity. 

Referring to figure 6, a uniform vortex sheet OR of strength AU,$u < x’ < 
( X  +*a), y’ = 0,  is subtracted from the vorticity distribution in region I. The induced 
normal velocity vI-voR is calculated on the splitter plate, -+a < x‘ < +a, and it is 
this velocity that is annulled on thc plate rather than the velocity vI. This in effect 
gives a small distance a in which the induced normal velocity vI-voR decays to 
negligible values, and hence a very efficient Fourier analysis of the function vI-vOR, 
and a simple superposition of a uniform infinite vortex sheet r, of strength AU, 
- co < x’ < 00 instead. The induced velocity due to the vortex sheet OR is given 

by 

or 

and 

or 

3.2. Sampling and power-spectrum analysis 

To measure the feedback effect, we calculate the velocity in the S-layer as discussed 
above and compare its harmonic content with that of the velocity mapped directly 
from the T-layer. Let v’(t’) be a velocity in t‘ a t  any (x’, y’), with a periodicity over 
the interval t’E [0, TI, where T = YT,, n being the number of pairings. This velocity 
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is constituted of n subharmonic frequencies, fundamental frequency and higher 
harmonics. 

The velocity v’ has an amplitude spectrum that is not monotonic in general. In  
doing a discrete Fourier analysis of v’, therefore, it  has to be ascertained that we do 
not get into the hazards of aliasing. Choosing the fundamental frequency f o  as the 
Nyquist or the folding frequency we have, from the sampling theorem, the 
equispaced time interval for band-limited functions given by 

This means that we need to sample the values for v’(t’) at  a t  least Snfl  regular 
in terv ah.  

In  the T-layer different numbers of samples, equal to and greater than the number 
determined by the sampling theorem, were used to evaluate the effects of aliasing. 
Based on these results, a proper choice for the number of samples for the function 
v’(t’) in the S-layer was made. 

3.3. Error checks 

Apart from various diagnostic tests for accuracy, there are some important checks 
to be made on the computations in the S-layer. Once the transformations take us 
from the T-layer to the S-layer, we have a certain vorticity distribution in the 
region I (figure 5 )  which is subject to an integral condition: 

ropQo = jj w’ dx’ dy’ = X A[’ 

Since the perturbation vortex sheet r ( x ’ )  cancels the induced velocity vI -vOR on 
the plate, which arises from ( a )  the vorticity distribution in region I of total 
circulation X AU and (6) the vortex sheet OR of total circulation X AU, the total 
circulation r, around the perturbation vortex sheet should be equal to zero. A simple 
expression for the total circulation rT can be derived as follows: 

rT = r(g) dg = r($) $ sin $ d#, 
-$a 0 

g =  -1 with 2a cos #, 

using ( lo ) ,  or, r, = .qr,+a~). 

r, = -vo), 
In  view of (13), we have 

where vo and v1 are given by (12) with its left-hand side replaced by v,(B)-v,,(O). 
If the solution (10) for the plate, the non-uniform vortex sheet r($), is unique, then 

the right-hand side of (16) should be zero. The vortex density r(4) can be looked 
upon its a perturbation in the neighbourhood of the plate trailing edge d < ;a over 
the uniform vortex sheet of strength AU that extends to x’+-co. 

The most important check in the present computations is to make sure that data 
are sampled a t  a sufficient number of points in carrying out the harmonic analysis of 
the function ~ ’ ( t ’ ) ,  otherwise serious aliasing errors will occur. Since the amplitude 
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spectrum of w’(t’) is non-monotonic in general, any aliasing of higher frequencies will 
result in false amplitudes and phases of the frequencies of interest. 

In  the T-layer, an analysis was carried out with 128, 64, 32, 16 and 8 samples over 
the interval x ~ [ O , 2 ~ h , , ] .  Sampling with the first three sets of points yielded 
amplitude spectra agreeing with one another up to four decimal places. Amplitude 
spectra with the fourth set, 16 samples, agreed with the previous ones to the third 
decimal place, whereas the last set gave a spectrum about 30% different from the 
previous ones in the range of frequencies of interest. With the value of n = 2,  a proper 
choice for Ax would correspond to 8 samples according to the sampling theorem, 
which according to the analysis in the T-layer is insufficient. Therefore, our optimum 
choice for the number of samples is 16, which as mentioned before is satisfactory. 
This gives us an idea of the band-limitedness of the function w(x) in the T-layer, that 
is, the function w(x) is band-limited beyond the second harmonic of the fundamental, 
which corresponds in the S-layer to a frequency twice the fundamental frequency fo. 

3.4. Results in the X-layer 
The computations are carried out corresponding to two values of velocity ratios and 
a t  a Reynolds number of 50 based on the initial shear-layer thickness. The values of 
AUIU, are chosen as 2 and 0.666. The initial perturbations are chosen from the linear 
stability theory and the amplitude ratios between the fundamental and the 
subharmonics are progressively fixed a t  2 so that each ‘local fundamental’ has a 
chance to amplify on its own before its subharmonic begins to overtake it. Four 
different time realizations of the flow pattern shown through the vorticity contours 
corresponding to AU/U, = 0.666 are shown in figure 7(a-d). The same realizations 
are shown through passive-scalar contours in figure 8 (a-d). The initial stability, 
predominantly the fundamental, is seen to roll-up. Then the rolled-up structures 
coalesce further downstream. Still further downstream, the once-paired structures 
coalesce again. During this process of pairing, the spacing between and the scale of 
these structures is seen to approximately double as expected. The same interaction 
between the structures is seen in figure 9, which gives a time realization corresponding 
to AUIU, = 2. The pattern of passive-scalar contours shown in figure 10 (Plate 1 )  is 
strikingly similar to that of the structures observed by Brown & Roshko (1974), 
Winant & Browand (1974) and by others. 

The induced velocity due to the distribution of varticity in the S-layer on the 
splitter plate is plotted in figure 11 (a) for the case of 4U/Um 5 2 for a given t‘. This 
vorticity perturbation i s  seen ta  decay to zero a t  upstream distances greater than a 
few furldamental wavelengths of  the initial perturbation, Tho vortex-sheet (splitter- 
plate) density that will cancel this induced velocity is shown plotted along the length 
of the plate upatream in figure 11 (b) .  

While assessing the differences in the phase and amplitude between the calculations 
with and without feedback, i t  should be noted that if the initial perturbation a t  
x‘ = 0 in the S-layer is the same as that in the T-layer a t  t = 0, then the velocity in 
the S-layer, ~ ’ ( t ’ ) ,  and that transformed directly from the T-layer can be directly 
compared except that the phase change of the perturbation is linear in time t in the 
case of the latter. But, as is the case in the experiments, the splitter plate is held fixed 
in the present computations and the flow is imagined. to be excited elsewhere, 
x’ = 0, y’ =l 0. This gives a zero velocity ‘u’ a t  x’ = 0 for all t’. Only some distance 
downstream of the trailing edge, x’ > 0, y’ = 0 will the flow perturbations have 
recovered from this effect and the comparison between w’ and that mapped directly 
from the T-layer become meaningful. 
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To quantify the feedback signal in the shear layer, the contribution corresponding 
to the subharmonic of the initial fundamental is measured upstream of the region 
where the first subharmonic reaches its peak or saturates. This includes the regions 
where the fundamental has rolled-up into a vortex structure, where the first 
subharmonic begins to dominate and where it eventually saturates. The relative 
change in amplitude of the first subharmonic is calculated along with the change in 
the phase difference between this subharmonic and its fundamental. The change in 
the phase difference is calculated relative to the phase shift that would inhibit the 
subharmonic instability. These results are plotted in figure 12 for various downstream 
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X < l &  

FIGURE 8. (u-d) Passive-scalar contours in the S-layer corresponding to four different time 
realizations; A(J/cJm = 0.666. 

stations x’, where the relative change in the amplitude and the phase difference are 
plotted against the crossflow direction y’. The negative values of y‘ correspond to the 
region of high-speed stream. 

The feedback signal is measured downstream of the location where the 
fundamental has rolled-up into a vortex structure. It is in this region that 
the subharmonic begins to dominate since the fundamental has now saturated. Also, 
the feedback signal can be crucial in altering the subharmonic instability mechanism 
in this region. In figure 12 ( a ) ,  corresponding to AUIU,  = 2, between the roll-up and 
the first pairing, i.e. 1.5 < x’/h, < 4.0, both amplitude and phase difference are 
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FIGURE 10. Passive-scalar contours in a mixing layer, AU/U, = 0.666. 
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FIGURE 10. Passive-scalar contours in a mixing layer, AU/U, = 0.666. 
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Y - 0  
A0 

1 2 3 4 5 6 I 8 

X’JAO 

FIGURE 9. Vorticity contours in the S-layer at a given time t ’ ;  AU/tJ,,, = 2. 

- 0.060 

I I I 
10.0 10.5 11.0 11.5 12.0 12.5 

X’lAO 

FIGURE 11. (a) ----, Normal velocity induced on the plate due to the mapped vorticity in the S- 
layer at a given time t‘,  vk/U.  ( b )  -, Strength of the distributed vorticity on the plate at a given 
time t’, r,/UA,. 

altered by about 10 to 15 % at  the midplane, y’ = 0, between the high- and low-speed 
streams. Away from it, the feedback either increases or decreases, and the maximum 
alteration is about 30%. However, since the perturbations feed on the shear, their 
effect will be predominant near the midplane because of the presence of the 
maximum mean velocity gradient there. It is, therefore, expected that the 
subharmonic instability is not altered appreciably even though the feedback away 
from the midplane is not small. In  figure 1 2 ( b ) ,  corresponding to AUIU, = 0.666, 
feedback is negligible everywhere ; the maximum value between the roll-up 
(dlh, ,  = 4.5) and the first pairing (x’lh,, = 12.0) is about 10%. 

In their mixing-layer experiment at AUIU, z 1.3, Dimotakis & Brown (1976) 
detected the feedback through the velocity-fluctuation spectra which showed the 
presence of a frequency of the order of L/U,  for all X’E [ O ,  L]. This corroborated their 
hypothesis that even though the induced field a t  a point due to a given vortical 
structure downstream decays as l l x ,  as it moves further downstream the circulation 
around it increases linearly downstream on the average and therefore its influence a t  
that point will not decay. However, whereas the total induced field a t  a given point 
may be strong, its contribution to the subharmonic of interest here may not be. It, 
is this particular contribution of the induced field that is of interest in this study. 

I n  modelling the initial development of axisymmetric turbulent jet flows a t  low 
Mach numbers, Laufer & Monkewitz (1980) used the following argument based on a 
feedback mechanism. The time taken by an incipient vortex to reach the location 
where it pairs and the time taken by the ensuing acoustic disturbance to  travel 
upstream to  the origin is equal to the time period of the subharmonic corresponding 
to this pairing event. They thus calculated the locations of first, second and third 
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subharmonics, in close agreement with those given by the experiment of Kibens 
(1980). This suggests that the feedback is significant in the case of axisymmetric jets 
(AUIU, = 2.0). 

The results presented in this study should be in error for large values of AU/U,, 
since the error of the transformations is O(AU/SU, ) ,  as discussed earlier. 
However, according to the present model, the feedback for the largest possible value 
of AUlU,  = 2.0 is larger, in general, than that for AU/U,  = 0.666. This result is in 
agreement, in spirit, with the predictions of Laufer & Monkewitz (1980) and the 
findings of Dimotakis & Brown (1976), for large values of AU/Um. 

Results corresponding to the feedback effect on the interaction between the first 
and the third subharmonics are shown in figure 13. The variation in the amplitude 
of the third subharmonic and the phase difference between it  and the first 
subharmonic are plotted versus y’ for various streamwise stations between the 
locations where the first and the second pairings are complete. Of course, as we 
approach the location of the second pairing, the feedback prediction becomes crude 
since the signal from downstream does not contain any lower imposed subharmonics, 
and therefore does not properly reflect the elliptic influence from downstream. 
However, closer to the location of the first pairing, the results as shown in figure 13 
are accurate and the feedback is about 10 to 15%. 

The present study has been carried out a t  a Reynolds number of 50 based on the 
initial shear-layer thickness, or 730 based on the fundamental wavelength. This 
represents a moderately large Reynolds number. It has been shown by Davis & 
Moore (1985) that as the Reynolds number is increased, the presence of feedback 
becomes appreciable so that the vortices do roll-up even if the forcing near the origin 
is stopped after a brief initial interval. Although this argument does not 
automatically extend to the feedback with regard to the subharmonic instability, it 
can be expected that for a given value of AUIU,, as the Reynolds number increases, 
the feedback of interest here may also increase, since the physical diffusion becomes 
smaller. 

To check the dependence of feedback on the forcing levels, feedback predictions 
are made at  two different sets of forcing levels with the fundamental amplitude fixed ; 
in the first one, both the first and third subharmonics are a t  the same amplitude as 
the fundamental ; in the second one, the first subharmonic is set a t  half the amplitude 
of the fundamental and the second a t  half that  of the first subharmonic. The 
predictions in the two cases do not indicate any dependence on the forcing levels for 
small AUIU,. However, the forcing levels are well within the limit where linear 
theory would hold and are such as would give the fundamental a chance to amplify 
on its own before its first subharmonic begins to  overtake it. In  situations where the 
subharmonic is imposed a t  a higher forcing level than the fundamental, especially for 
large AUIU,, i t  can be expected that the feedback would show a dependence on the 
forcing levels. In  the case of ‘naturally’ perturbed layers, the spectrum of 
perturbation frequencies is also biased depending on the physical environment near 
the origin. If the forced mixing layer develops downstream in a similar fashion as 
that perturbed naturally, see figure 10, it can be expected that the forcing near the 
origin is similar in the two cases, except for any local background noise that will 
supplement the instability in the latter case as it proceeds downstream in the absence 
of any appreciable feedback. This is suggested by the computational study of 
subharmonic instability of mixing layers by the author (Kaul 1986b). 
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4. Conclusions 
This study deals mainly with the strength of the subharmonic disturbances that 

the large vortices further downstream in a mixing layer can induce on the flow 
upstream. This feedback effect has been found to  be relatively small, a t  least for 
small velocity ratios, The induced effect of the vorticity distribution is also a measure 
of the ellipticity of the governing equations for the mixing layer. Thus we expect that 
the streamwise developing layer is only weakly elliptic, a t  least for small velocity 
ratios. The results suggest that  the perturbations that control the growth of the 
subharmonics and therefore of the shear layer itself are not primarily caused by the 
developing instability of the layer itself but by external disturbances. It follows that 
the rate of growth of a natural layer should depend on more than thc value of 
AIT/(Jm. The spectral content of the rantlorn pcrturbations of the flow near the origin of 
the layer should influence its growth, and only for two layers for which this spectral 
content is dynamically similar should one expect similarity downstream. Perhaps the 
lack of agreement between experimentalists about the growth rate, e.g. Liepman & 
Laufer (1947), Brown & Roshko (1974), Miles & Shih (1968), Pate1 (1973), Mills 
(1968), Spencer & Jones (1971), Wygnanski & Fiedler (1970), and the evidence of the 
large effect of the initial conditions on the growth rate (Weisbrot, Einav & 
Wygnanski 1982; Ho & Huang 1982) are related to this sensitivity of the layer 
dynamics to initial conditions. Thus the traditional view of the mixing layer as a self- 
similar flow may need re-examination. 

A unique method to calculate the spatially growing mixing-layer vorticity field has 
been developed which clearly captures the distribution of vorticity realistically for 
small values of velocity ratios. The method does not suffer from the ill-posedness of 
the direct simulation methods for the spatially growing mixing layers in that no 
arbitrary inflow and outflow conditions have to be imposed, and that there is no 
contamination of initially imposed linear perturbations by the truncation-error 
terms of a finite-difference scheme. The inflow conditions for the present method 
derive themselves out of the transformation and include the contribution from the 
feedback signal. The method offcrs us the unique ability to measure the feedback 
signal in the spatially growing mixing layer and thus in having a priori knowledge 
of the appropriate perturbation required to be imposed a t  the origin of the flow for 
a given mixing-layer growth rate. This does not seem to be possible otherwise. Also, 
the method can provide the inflow and outflow conditions for a direct simulation of 
the spatially growing mixing layer, which, in principle, are not available otherwise, 
e.g. the outflow boundary condition must be of the properly reflecting type rather 
than of the non-reflecting type. 

Various extrapolation outflow boundary conditions in the S-layer can be derived 
using the transformations proposed here. For example, a parabolic extrapolation 
boundary condition in the T-laycr, ut = 0, would transform to an appropriate 
downstream boundary condition, u; +C;,,,u: = 0 in the Slayer. 

Although the total vorticity-induced field in the mixing laycr is not necessarily 
small, its effect on the subharmonic instability is seen to be small in the 
neighbourhood of the midplane between the high- and low-speed sides of the mixing 
layer, even for the largest possible value of AUIU, (one stream a t  rest). Since the 
transformation becomes progressively less accurate as the velocity ratio increases, 
the feedback prediction for AUIU,,, = 2 is not very accurate. However, for small 
AU/U,, it has been quantitatively shown that the feedback in a forced mixing layer 
is small. As a result, the proposed transformations offer the novel capability of 
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studying the spatially growing mixing layers (Kaul 19866) with small velocity 
ratios. 
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